Although TLR-mediated inflammation is essential for host defence against pathogens, TLR signalling must be tightly controlled because unrestrained TLR activation generates a chronic inflammatory milieu that can result in various chronic inflammatory disorders.9 Several TLR signalling suppressors have been described in immune cells.10 Recent studies LDK378 revealed that Tyro3, Axl and Mer (TAM) receptors play a pivotal role in negatively regulating innate immunity via the inhibition of the TLR-mediated inflammatory response and the promotion of phagocytic clearance of apoptotic cells.11–13 The TAM receptors belong to a subfamily of receptor tyrosine kinases. Of the 58
members of the receptor tyrosine kinase family,14 the TAM receptors are among the few that are specific to vertebrates. Analysis on TAM knockout mice revealed that TAM receptors play see more an essential role in the regulation of tissue homeostasis in the adult nervous, vascular and reproductive systems.15 Notably, TAM receptors have profound effects in the homeostatic regulation of innate immune responses.16,17 Two closely related proteins, the product of growth-arrest-specific gene 6 (Gas6) and Protein S (ProS), are common biological ligands of TAM receptors.18 Gas6 and ProS are two secreted soluble proteins that carry an N-terminal γ-carboxylated glutamic acid domain that confer the ability
to bind phosphatidylserine on the surface of apoptotic cells,19 and a C-terminal sex hormone-binding globulin-like module that can bind and activate TAM receptors.20 Although the Gas6/ProS-TAM Alanine-glyoxylate transaminase system has a pivotal role in regulating innate immunity, the regulation of this system remains largely unknown. In the current article, we provide evidence that TLR activation suppresses the
expression of Gas6 and ProS, which facilitates the TLR-mediated inflammatory response in macrophages. The data provide insights into the regulation of Gas6 and ProS expression and function during the inflammatory response. C57BL/6 strain mice 8–10 weeks of age were obtained from the animal facility of Peking Union Medical College (Beijing, China). The mouse mutants for TAM receptors were provided by Dr Greg Lemke (Salk Institute for Biological Studies, La Jolla, CA). These mice were housed under specific pathogen-free conditions with a 12 : 12 hr light : dark cycle and had free access to food and water. The mice were handled in compliance with the Guideline for the Care and Use of Laboratory Animals established by the Chinese Council on Animal Care. Ultra-pure S. Minnesota LPS, poly(I:C), CpG oligonucleotides, antagonists of TLR4 (tlrl-rslps) and TLR9 (tlrl-2088) were purchased from InvivoGen (San Diego, CA). Neutralizing anti-TLR3 antibody (TLR3.7) was purchased from Apotech (Geneva, Switzerland).