63(SiO2)0 37 multilayer films were all elaborated on flexible sub

63(SiO2)0.37 multilayer films were all elaborated on flexible substrates by magnetron sputtering system under external bias magnetic field. The flexible substrates of this experiment were 13-μm thick polyethylene terephthalate films. A RF magnetron system was used to sputter SiO2, while DC magnetron cathode was used for FeCo target. The base pressure before deposition was under 1 × 10−7 Torr, and the working pressure during deposition was 2.5 × 10−3 Torr. The difference between the monolayer films

and the multilayer this website films was the sputtering process. The FeCo-SiO2 monolayer films (120 nm) were prepared by co-sputtering both targets all time. For the FeCo/(FeCo)0.63(SiO2)0.37 multilayer films that were prepared by tandem sputtering, FeCo alloy layers (10 nm) and FeCo-SiO2 layers (20 nm) were sputtered alternately by controlling the shutter in front of the Si target. The total thickness of the films was also 120 nm, and the thickness of each layer could be managed by the deposition time. The structure

of the films was investigated by X-ray diffraction (model Bede D1, Durham, England) and transmission electron microscopy (TEM). Saturation magnetization, coercivity, and KU-57788 nmr in-plane magnetic antisotropy field Hk were measured by BHV-525 vibrating sample magnetometer (VSM, Riken Denshi Co., Ltd., Tokyo, Japan). The microstructures and chemical composition of the samples were analyzed using a field emission scanning electron microscope and energy-dispersive spectroscopy. Complex permeability μ was measured in the frequency range of 500 MHz to 8 GHz by coaxial technique. The details of the p38 MAPK inhibitors clinical trials measurement were discussed before [7]. Results and discussion The top-view TEM image and electron diffraction pattern of the monolayer and multilayer films deposited

on silicon nitride membrane window grids were shown in Figure 1. It was found that in both films, the FeCo metal particles were embedded in insulating SiO2 matrices and presented polycrystalline structure according to the electron diffraction patterns, and the FeCo particles size is about 5 to 7 nm. However, compared to the monolayer films shown in Figure 1a, the FeCo particles of O-methylated flavonoid multilayer films were reunited more observably in Figure 1b. The reason was analyzed and that the TEM shows all the information along the thickness direction which displays the particle information of the in-plane added in the FeCo layer. As the cross-sectional SEM image of multilayer films are shown on Figure 2, the total experiment thickness of a batch circled by red line, which includes a FeCo layer and a FeCo-SiO2 layer, was 30 nm. FeCo/FeCo-SiO2 interface in batches is difficult to discriminate. However, the phenomenon of the boundary between the batches was distinct and intuitively justifies the existence of the multilayer structure. The difference is considered as the influence of the compatibility. Figure 1 Top-view TEM image and electron diffraction pattern of films: (a) FeCo-SiO 2 monolayer, (b) FeCo/(FeCo) 0.

Comments are closed.