The plant is of a monotypic genus, endemic to NSW and Victoria, Australia [3]. In 2004 the genus Haeckeria was reassessed by Orchard as C. amaranthoides and since then C. amaranthoides belongs to the genus CP-690550 datasheet Calomeria of the family Asteraceae (Compositae) [4]. As a biennial plant it can grow to more than three metres high, with flowers as waving plume bushes and wrinkly leaves with an aromatic scent. It is also called incense plant. The plant family of Asteraceae
are known for their natural products. One type includes sesquiterpene lactones (SL) which to date is of great interest for their potential as anti-cancer agents as reviewed by Heinrich et al. and Zhang et al. [5, 6]. Ovarian cancer is the fifth leading cause of death in women and remains the leading cause
of death from gynaecological malignancy in many countries, in spite of chemotherapy with Platinum derivates and/or Taxol after surgery. Of the malignant epithelial tumors (>90% of all ovarian cancers), the serous papillary RG7112 variants form the largest subgroup [7, 8]. Due to its dismal prognosis there is an urgent need for new treatment strategy for ovarian cancer. For the first time we have studied C. amaranthoides for its possible anti-tumor activity. An SL (EPD) and a structurally related sesquiterpene (EPA) have been found, extracted and purified. Among them EPD has shown in vitro and in vivo (mice) high toxicity in ovarian
cancers. Methods A voucher specimen of Calomeria amaranthoides, collected near Old Bell’s Line of Road, Mount Tomah NSW 2758, Australia, is held in the John Ray Herbarium, University of Sydney, Collection number: Silvester 110118-01. Leaves of C. amaranthoides, gathered in the Blue Mountains (Mount Tomah, NSW, Australia) were air-dried while protected from sunlight. Fractionation of extracts by column chromatography Dried plant material (350 g), cut in small pieces was soaked in chloroform (CHCl3) at room temperature. After 24-48 hours a crude extract of the leaves was removed and evaporated under Mannose-binding protein-associated serine protease reduced pressure (21.3 grams, 6.0%). The residue, re-dissolved in CHCl3 (30 mL) was applied to a column (21 cm × 5 cm i.d.) filled with Silicagel (Lichroprep Si 60, particle size 15-25 μm; Merck, Germany). Cilengitide Elution was carried out with a stepwise gradient consisting of hexane:dioxane, 98:2 (v/v 400 mL); hexane:chloroform:dioxane, 88:10:2 (v/v 600 mL); hexane:chloroform:dioxane:ethyl acetate:2-propanol, 80:10:2:6:1, (v/v 600 mL) and hexane:chloroform:acetone:methanol, 56:20:16:8, (v/v 400 mL). A total of 157 fractions (10 mL each) were collected and combined into groups based on HPLC analysis.