g. dominant negative-graded loss of function). To distinguish these alternatives, we compared genome-wide gene expression changes correlated with CAG size across an allelic series of heterozygous CAG knock-in mouse embryonic stem (ES) cell
lines (Hdh(Q20/7), Hdh(Q50/7), Hdh(Q91/7), Hdh(Q111/7)), to genes differentially expressed between Hdh(ex4/5/ex4/5) huntingtin null and wild-type (Hdh(Q7/7)) parental ES cells. The set of 73 genes whose expression varied continuously with CAG length had https://www.selleckchem.com/HDAC.html minimal overlap with the 754-member huntingtin-null gene set but the two were not completely unconnected. Rather, the 172 CAG length-correlated pathways and 238 huntingtin-null significant pathways clustered into 13 shared categories at the network level. A closer examination of the energy metabolism and the lipid/sterol/lipoprotein metabolism categories revealed that CAG length-correlated genes and huntingtin-null-altered genes either were different members of the same pathways or were in unique, but interconnected pathways. Thus, varying the polyglutamine size in full-length huntingtin produced gene expression changes that were distinct
from, but related to, the effects of lack of huntingtin. 3-Methyladenine ic50 These findings support a simple gain-of-function mechanism acting through a property of the full-length huntingtin protein and point to CAG-correlative approaches to discover its effects. Moreover, for therapeutic strategies based on huntingtin suppression, our data highlight processes that may be more sensitive to the disease trigger than to decreased huntingtin levels.”
“Background: Ibuprofen and other nonsteroidal anti-inflammatory drugs have been designed to interrupt eicosanoid metabolism in mammals, but little is known of how they affect nontarget organisms. Here we report a systems biology study that simultaneously describes the transcriptomic and phenotypic stress responses
of the model crustacean Daphnia magna after exposure to ibuprofen.\n\nResults: Our findings reveal intriguing similarities in the mode of action of ibuprofen between vertebrates https://www.selleckchem.com/products/S31-201.html and invertebrates, and they suggest that ibuprofen has a targeted impact on reproduction at the molecular, organismal, and population level in daphnids. Microarray expression and temporal real-time quantitative PCR profiles of key genes suggest early ibuprofen interruption of crustacean eicosanoid metabolism, which appears to disrupt signal transduction affecting juvenile hormone metabolism and oogenesis.\n\nConclusion: Combining molecular and organismal stress responses provides a guide to possible chronic consequences of environmental stress for population health. This could improve current environmental risk assessment by providing an early indication of the need for higher tier testing. Our study demonstrates the advantages of a systems approach to stress ecology, in which Daphnia will probably play a major role.