(C) 2010 International Society for Infectious Diseases Published

(C) 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.”
“An epinephrine

(E) tablet is under development for sublingual (SL) administration for the first-aid treatment of anaphylaxis; however, the inherent bitterness of E may hinder acceptability by patients, especially children. To assess the degree of E bitterness and to predict the masking effects of sweetening and/or flavoring non-medicinal ingredients (NMIs), the potential usefulness of an electronic tongue (e-Tongue) was evaluated. The e-Tongue sensors were conditioned, calibrated, and tested for taste discrimination. Six standard active pharmaceutical GM6001 mouse ingredients were used to build and validate a bitterness model which was then used to assess E bitartrate (EB) solutions from 0.3-9 mM. Taste-masking efficiency of aspartame (ASP), acesulfame potassium (ASK), and citric acid (CA) each at 0.5 mM was evaluated. Using EB 9 mM, the bitterness score was 20 on a scale of 20 (unacceptable) down to 1 (not detected). When NMIs 0.5 mM were added, neither ASK (17.2, unacceptable) nor was ASP (14.0, limit acceptable) effective in masking the bitter taste. When the combination of ASK and ASP was used, the bitterness score was reduced to 9.2 (acceptable). Elafibranor order However, the addition of CA alone resulted

in the best reduction of the bitterness score to 3.3 (not detected). Using the e-Tongue, the incorporation of a variety of sweetening and/or flavoring NMIs into a SL tablet of E could be shown to mask its bitter taste by up to 80%. These results should be confirmed by in vivo studies.”
“Biobased polycarbonates were synthesized from 1,4:3,6-dianhydro-D-glucitol, 1,4:3,6-dianhydro-L-iditol, and 1,4:3,6-dianhydro-D-mannitol as the principal diols, using different types of carbonyl sources. The (co)polycarbonates resulting from polycondensation

reactions in solution using triphosgene consisted of several types of polymer chains with respect to chain P5091 research buy topology (e. g., linear or cyclic chains) and end-group structure (e. g., hydroxyl, chloroformate or alkyl chloride end-groups). The introduction of flexible comonomers seemed to increase the amount of cyclic structures in the product mixtures. The melt polymerization of diphenyl carbonate with 1,4:3,6-dianhydrohexitols required high reaction temperatures and led to almost exclusively hydroxy-functional poly(1,4:3,6-dianhydrohexitol carbonate)s. Copolymerizing the 1,4:3,6-dianhydrohexitols with 1,3-propanediol and diphenyl carbonate at high temperature resulted in the partial loss of 1,3-propanediol. On the other hand, by melt polycondensation of 1,4:3,6-dianhydrohexitol-based bis(phenyl carbonate) monomers in combination with primary diols and/or triols, the insertion of the primary alcohols could be achieved in a more controlled way.

Comments are closed.